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Abstract-The basic notions of material Uniformity, originally developed by Noll and Wang, are presented
using more traditional mathematical tools. Attention is focused on hypereiastic materials and new results
are obtained pertaining to the arbitrariness of the strain energy level. The role of the isotropy group in
allowing for the smooth extension of a material connection over the whole body is brought out.

I. INTRODUCTION

The notion of material uniformity within the framework of contemporary nonlinear continuum
mechanics owes its origins to Noll[l]. This concept was generalized and further developed by
Wang [2]. For a detailed historical account as well as a bibliography to related work we refer the
reader to Bloom [3]. The contribution of Wang is particularly remarkable in that he was able to
formulate the related physical concepts and developments in terms of modem global differential
geometry, which relies on such abstract notions as fiber bundles and Lie groups. While rich in
geometrical insight, these developments seem to lie beyond the grasp of the vast number of
researchers and users of continuum mechanics.. It is our opinion that this unfortunate circum
stance has prevented a potentially useful theory from spreading and attaining its well deserved
position in the study of the physics of continuous media.

The main objective of this paper is to present the basic notions of material uniformity in a
manner more in keeping with traditional developments in continuum mechanics and thus make
them accessible to workers in the field. Besides this shift in point of view, some new results are
presented in this paper. Of these, we cite:

(i) We introduce the notion of curvewise smooth uniformity and develop criteria for it. In
particular we introduce a differential material descriptor r c, which plays a role akin to Wang's
material connection [2].

(ii) We treat hyperelastic rather than elastic material response. Paradoxically, this serves to
complicate the analysis due to the appearance of two scalar functions in addition to the strain
energy density W; these are U, related to the arbitrariness of the energy level at points of the
body and V, related to the fact that the isotropy groups for elastic stress and energy are in
general not the same.

(iii) We bring out the role played by the isotropy group in contributing to the non
uniqueness of the material descriptor r .. The results here are summarized in Propositions 2 and
4.t Moreover, we show in Proposition 3 how the non-uniqueness may be utilized to patch
together regions of the body each of which separately enjoys smooth uniformity.

Section 2 introduces the concept of uniformity in the context of hyperelasticity. In Section 3
the local material symmetries of a uniform hyperelastic material are discussed and charac
terized in terms of a single uniformized or basic isotropy group. Section 4 presents the notion
of curve-wise smooth uniformity which is then related in Section 6, to locally and globally
smooth uniformity. Section 5 attempts to underline the role played by the isotropy group in

tIn particular, it is important to mention that our eqn (6.6) can be shown essentially equivalent to Wang's field
condition: [2], eqn (9.32).
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allowing the freedom required to patch-up locally integrable descriptors into a single smooth,
and in general non-integrable, material connection in the sense of Wang[2].

2. MATERIAL UNIFORMITY

Roughly speaking, a body 00 is materially uniform if all its points are made of the same
material. Information concerning the material behaviour at a point X is obtained by mapping a
small neighbourhood of that point into different configurations in physical Euclidean space E3

and measuring the response (e.g. the stress tensor). It is customary to identify the body 00 with
one of its configurations and to call deformation the mapping from this reference configuration
to any arbitrary one. For a first-order (simple) elastic material, the response depends only on
the gradient (first derivative) F of the deformation. In particular, we shall concentrate our
attention on the hyper-elastic case, in which the response is completely described by a single
scalar function W, the strain energy density. Thus, in general, the constitutive law for a
hyperelastic body will be given as a function

W= W(F,X), (2.1)

in which the gradient F is evaluated at the body point X.
To recognize whether or not 2 different points, X and Y, say, are made of the same m~terial,

it is obviously enough to check whether there exists a mapping between a neighbourhood 'JI' of
Y and a neighbourhood CU of X such that, after carrying 'JI' onto CU, the response of 'JI' to
arbitrary subsequent deformation becomes identical to the response of CU. Since we are dealing
with first-order materials, the mapping between 'JI' and CU manifests itself only through its
(non-singular) first derivative Px(Y), which is a linear isomorphism carrying vectors at Y onto
vectors at X.

Physically (see Fig. 1), one "cuts" a small element around Y and one manages to squeeze it
into a small hole around X, so that the mending patch at X functions exactly as the original
element before the transplant. If such an operation is possible, one says that X and Yare
materially isomorphic, and Px( Y) is a material isomorphism. In terms of the strain energy
density we may express the condition of material isomorphism between X and Y as

W(F, X) =W[FPx(Y), Y] +C, (2.2)

where the constant C needs to be introduced since the energy reference level is arbitrary.
We note at this point that the material equivalence between X and Y could also have been

formulated in terms of two isomorphisms P(X) and P( Y) between each of the points and the
fixed standard translation space V3 of Euclidean space E3• Thus, X and Y are materially

Fig. I.
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isomorphic if there exist two such isomorphisms such that

W(HP(X),X) +C. = W(HP(Y), Y)+ C2=W(H),
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(2.3)

where C.. C2 are constant and where now H represents an arbitrary non-singular linear
mapping from V3 onto the space of vectors ("tangent space") at an arbitrary point in physical
space (Fig. I). The connection between eqns (2.3) and (2.2) is given by

Px(Y) =PxP(Y),

and

where the notation

Px = p-I(X),

is consistent with the obvious statement

(2.4)

(2.5)

(2.6)

(2.7)

We are now in a position to define a uniform hyperelastic body as one for which all points
are pairwise materially isomorphic. Using the concepts and notation embodied in eqn (2.3) we
state:

Definition 1
A hyperelastic body £l8 with constitutive law

W=W(F,X)

is said to be uniform if there exists a field of linear isomorphisms Px

a field of scalars U

and a scalar valued 2-point tensor function Wsuch that

W= W(F,X) = W(FPx) +U(X).

(2.1)

(2.8)

(2.9)

(2.10)

In eqn (2.8) TxL' denotes the space of tangent vectors at X E £l8 and in eqn (2.9) R denotes
the real line.' The word field is used loosely, since at this point we do not require any
smoothness condition.

3. UNIFORM MATERIAL SYMMETRIES

Let

be a material symmetry for the stress response at X, viz.

W(F, X) =W(FGx, X)+ Vx(Gx)

(3.1)

(3.2)
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for all F, where Vx(Gx ) is a constant, and thus leaves the stress response unaffected ([4], p.
310). It follows immediately that if Px is an isomorphism used as in (2.8) to define uniformity, it
can be replaced by the isomorphism GxPx. Indeed, combining eqns (2.10) with (3.2) we obtain

W(F,X) == W(FGxPx )+V(X)+ Vx(Gx ),

which is again of the form (2.10). Moreover, it is not difficult to see that the tensor

which by virtue of (2.4) can also be written as

is a material symmetry at Y. Indeed, using eqns (3.4), (2.10) and (3.3) repeatedly we get

W(FGy, Y) == W(FPyPX
I GXP yl

, Y)
'" -I'

== W(FPyP X GxPx )+V(Y)

== W(FPYPil,X)+ V(Y)- V(X)- Vx(Gx)

== W(FPy)+ V(Y)- Vx(Gx)

== W(F, Y)- Vx(Gx ),

(3.3)

(3.4)

(3.5)

(3.6)

which incidentally shows that Vx is the same at all points X for corresponding elements in the
isotropy group. In'uniform bodies, all local symmetries are connected in this way, i.e. by eqn
(3.4). Notice that the composition

(3.7)

is, by virtue of (3.4) independent of position in the body. Also, by a trivial use of eqn (2.10) it
follows that

W(H) = W(HG) + V(G), (3.8)

for all H. From here it follows that in a uniform body all material symmetries are typified by the
basic group of isotropy ~ of the uniformized strain energy density W.

In eqn (3.8) V( G) is the common value of Vx(Gx) for all X and corresponding Gx.
Let G1 and G2 belong to ~. Then a repeated use of eqn (3.8), viz.

shows that

W(H) == W(HG.) +V(G.)

== W(HG.G0+ V(G0+ V(G,), (3.9)

(3.10)

When V depends smoothly on ~ we may differentiate with respect to G2 and then set G2=1
to obtain

We also note the obvious result

V(l)=O

which follows, for instance, from (3.10) with G. =G2 == l.

(3.11)

(3.12)
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A useful tool in some manipulations pertaining to the analysis of uniform bodies is that of
uniformity basis. Let 'i(i = 1, 2, 3) be a (usually orthonormal) basis in the standard translation
space V) of E), and let Px be the field of isomorphisms (2.8) used in the definition of
uniformity. Then the field of local bases

IXi =Pxei (3.13)

defines a uniformity basis in ga.
Now, let Ix; be a uniformity basis in ga induced by a basis Ii in V). In such a basis the

components of the two-point tensors Px are given simply by the unit matrix, viz

(3.14)

Indeed, for all ., =vie; E V),

(3.15)

It follows now that the components of G and Gx, connected by eqn (3.7), in their respective
bases I; and 1](;, turn out to be the same. Thus, when using a uniformity basis, the material
symmetries of a uniform body are represented by a single matrix group, namely, the component
representation of the group f§ of Win any fixed basis 'i'

4. CURVE·WISE SMOOTH UNIFORMITY

As remarked in Section 2, so far we have not imposed any smoothness conditions on the
field of material isomorphisms. As a first step in that direction we introduce now the idea of
smooth material uniformity along a given curve c(s) by demanding that a field of material
isomorphisms Px(s) exist along the curve, such that Px(s) is a smooth function of the
parameter s. More precisely, let

be given such that

and let ga be materially uniform.

C: [-E, E] ... ga, (E > 0),

c(O) =Xo,

(4.1)

(4.2)

Definition 2
We say that 91 is smoothly uniform at Xo along c if a field Px of uniformity (2.8) can be

found such that the composition

Pc =Px °C (4.3)

is smooth.
We now seek to obtain a differential condition for this curvewise smooth uniformity. To this

end we combine eqn (2.10) and (4.3) to yield

W(F, c(s» =*(FPc(s» +U(c(s»,

and we differentiate with respect to the curve parameter s, viz

. [(a*)T.].W =tr aFP
c

FPc + U,

(4.4)

(4.5)
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where· liE d/ds, and with respect to F, viz

Combining eqns (4.5) and (4.6) we obtain

. [(8W)T. -1] .W =tr aF FP.p • + U,

where a well known property of the trace operator, tr, has been used. Denoting

(4.6)

(4.7)

(4.8)

we observe that, given any smooth function f., eqn (4.8) can be regarded as a system of 9
non-linear a.D.Eo's which, in general, will have a unique solution p. on a certain neighbourhood
[-E, E] of 0, with given initial conditions P.(O). Rewriting eqn (4.7) as

. [(8W)T ] .W = tr aF Ff. +U, (4.9)

which is a single quasi-linear P.D.E. for W, we see that given any smooth f. and U as
functions of s, this last equation will, in general, have a unique solution W(F, s). In view of the
above remarks we conclude

Proposition 1
A necessary and sufficient condition for a hyperelastic body!il with constitutive law

W= W(F, X)

to be smoothly uniform at Xo along the curve

C:[-E,E]~!il,

C(O) = Xo,

(2.1)

(4.1)

(4.2)

is that functions f.(s) and U(s) can be found such that eqn (4.9) is satisfied for s E [-E, E].
Indeed, the solution of eqn (4.8) provides a smooth field of material isomorphisms along the

curve.
If a body is such that at a given point Xoit is smoothly uniform at a piece ("germ") of every

smooth curve containing that point, the body is said to be curve-wise locally smooth at Xo.

5. THE ROLE OF THE ISOTROPY GROUP

As explaitted in Section 3, elements from the isotropy group can be used, by invoking eqn
(3.3), to replace one material isomorphism with another. Such an extra degree of freedom in the
choice of material isomorphisms plays a central role in smoothness considerations, particularly
in the case in which the symmetry group is continuous.

For definiteness, assume that C§ is a one-parameter groupt with parameter A. From eqn (3.7)
we know that the isotropy group at an arbitrary point X is given by

(5.1)

tSuch is the case, for example. for transversely isotropic materials. For higher dimensional continuous groups similar
considerations apply. by confining the attention to one-parameter subgroups.
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where Px is any material isomorphism (2.8). The r.h.s. of eqn (3.2) can be viewed then as a
function of A. Assuming, without loss of generality, that the group identity corresponds to
A= 0, and differentiating eqn (3.2) with respect to A at A::: 0 we obtain

[( aW)T dG -IJ [((lV)T dGJ0= tr aF FPx (fA Px + tr aG (fA' (5.2)

Note that we have also used the definition of the function V introduced in eqn (3.8). Equation
(5.2) expresses a differential condition to be satisfied by a uniform body with a continuous
one-parameter isotropy group. Comparing eqns (4.9) with (5.2) we conclude

Proposition 2
Given any functions f c and U satisfying eqn (4.9) for a material with a one-parameter

isotropy group, new functions satisfying eqn (4.9) can be found by the expressions

and

~ . . [(OV)TdGJU ::: U + I/I(s) tr oG dA.'

(5.3)

(5.4)

where I/I(s) is an arbitrary smooth function of s only.
A converse to eqn (5.2) can be motivated as follows. Let Rx be a tensor in TxfJ satisfying at

x

(5.5)

identically for all F. This can also be written as

(5.6)

with

(3.7)

Note that, since eqn (5.6) is satisfied identically in F, we conclude, using eqn (3.10) that

:E [W(F eoRX ) + V(eoR)],_fg = d~ [W(F e'oRx e('-'O>RX)+ V(e('-'O>R) + V(e·oR)l<._.o>_o (5.7)

=0,

for all EO, and therefore eqn (5.7) is a differential equation, whose unique solution is obviously

(5.8)

which shows that Rx is the differential at the origin of the one-parameter subgroup eoRx of the
isotropy group. Incidentally, this result proves that for a finite (discrete) isotropy group, there is
no Rx satisfying eqn (5.5).

The functions I/I(s) can be used as some kind of analytic continuators. For, let a curve c(s)
joining 2 points A, B (Fig. 2) be given and let Aft, AU and 8ft, 8U be functions satisfying eqn
(4.9) on intervals around A and B, respectively, but not coinciding on the (non-empty)
intersection of the intervals. On the intersection, however, the differences Aft - 8ft and
55 Vol. 20. No.3- 0
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A

Fig. 2.

AU - aU satisfy certain conditions which we now investigate. To this end, we note first that,
since a point must be materially isomorphic to itself, we must have at all points of the
intersection

(5.9)

where

and similarly for aPe- On the other hand it follows from eqn (2.10) that

l-V<FAPc) + AU = W(FsP.)+ sU,

so that using (5.9) and (3.8) we obtain

which, when compared with (5.11), yields

Differentiating (5.13) with respect to s we obtain

or, using eqns (5.9) and (3.11),

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

which shows that the U's and the f's are connected in a peculiar way. Evaluating (4.9) for both
sets of variables and SUbtracting yields

(5.16)

or, using (5.15),

(5.17)
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Comparing (5.17) with (5.5) we arrive at the
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Proposition 3
If two pairs of functions (Afe, AU) and (afe, aU) satisfy eqn (4.9) along a curve of a

material with a one-parameter isotropy group, then there exists a function I/I(s) of position
along the curve such that

. . [(aV)T dGl
AU - aU =1/1 tr aG C-I dA .

(5.18)

(5.19)

This last formula follows from (5.16) and from (5.2). Proposition 3 is the converse of
Proposition 2, as follows from (5.18) and (5.19) in the region of overlap.

Corollary
It is always possible to extend smoothly f e and U to a unique smooth expression on the two

intervals shown in Fig. 2.
Indeed, it is enough to extend smoothly I/I(s) to the whole interval 'Us around B and to set

(5.20)

and similarly for U.
We note, incidentally, that if the symmetry group is discrete, there is only one possible f eo

and therefore the continuation is always trivial.

Remark
Even in the trivial case, i.e. f e unique, the body may not be smoothly uniform along all of c

since Pe may suffer a discontinuity at the overlap.

6. SMOOTH UNIFORMITY

In Definition 1 the dependence of the isomorphisms Px on X was left completely arbitrary.
If, however, a smooth field of Px can be found over the entire body, we say that Lt enjoys
smooth uniformity. It may happen that even though such a global smooth field cannot be found,
a neighbourhood of each point exists such that the field Px is smooth on it. t In this case we say
that Lt enjoys locally smooth uniformity.

Following the treatment in Section 4 we try to obtain a differential condition for locally
smooth uniformity. Differentiating eqn (2.10) with respect to F

and with respect to X

aw =tr[( aW)TF!!s.]+~
ax anx aX ax'

and combining the results, we obtain

aW [(aW)T ]ax = tr aF Ff +U,

(6.1)

(6.2)

(6.3)

tThis concept was introduced by Wang in[2l, who called it simply "smooth uniformity". This situation is anaIOIous to
trying to cover the surface of a sphere with just one coordinate system with no sinauJarities. It cannot be done. But any
aiven point can be surrounded by a well-behaved coordiaate patch.
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where now
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au
U= ax'

r = apx p- I
ax x·

(6.4)

(6.5)

Note that when written out in reference coordinates r will tum out to have 3 free indices.
From the preceding derivation it is clear that the existence of smooth functions U, r on a

neighbourhood of each point satisfying eqn (6.3) is a necessary condition for locally smooth
uniformity.

On the other hand, let such functions be given satisfying eqn (6.3) and let a curve c be
specified through a point. Then from the arguments of the preceding sections it follows that the
body is curve-wise locally smooth. Note that since the material isomorphisms p. may tum out
to be path dependent, we cannot infer sufficiency from eqn (5.3). Because of this possible path
dependence it is natural to call r a material connection. The answer to the question "given r,
does there exist a smooth field of material isomorphisms Px such that eqn (6.5) is satisfied?", is
affirmative if and only if the Riemann-ehristoftel tensor R(f) vanishes identically on the
neighbourhoodt Similarly U must have a vanishing rotor so that it can be derived from a scalar
field U.

Let a locally smooth uniform body be given and let Px and U denote neighbourhood-wise
smooth fields satisfying eqn (6.3). We wish to find whether globally smooth functions rand U
can be constructed which satisfy eqn (6.3). To this end we note that the same arguments leading
to proposition 2 will apply now and we conclude

Proposition 4
Let.!l8 be a locally smooth uniform body with a one-parameter (.\) symmetry group '9.
Then, if Px and U denote the neighbourhood-wise smooth fields satisfying eqn (5.3), the

functions

• aU [(dV)T dG]
U= ilX+I/1(X)tr dG dA'

(6.6)

(6.7)

where t/J(X) is an arbitrary vector-valued neighbourhood-wise smooth function, also satisfy eqn
(6.3).

In a similar way Proposition 3 and its corollary can be generalized. We note, finally, that in
the case of a discrete isotropy group the material connection must be unique.

Remark
One can develop a criterion for uniformity entirely in terms of a given strain energy density

W, eqn (2.1). erhis can be achieved by first differentiating the basic eqn (6.3) with respect to F.
This provides 9 additional vector equations which can be used to solve for the components of r.
The requirement that these f's be independent of F then provides a rather complex differential
condition on W, which is necessary for uniformity. A complete development of this approach,
inclUding questions of sufficiency, integrability and uniqueness, provides a challenge for future
research.
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tNote this requirement is just the integrability condition for the system of eqns (6.5).
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